

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

Tait Environmental Management, Inc.

October 31, 2005

701 N. Park Center Drive Santa Ana, CA 92705 ATTN: Mr. Matt Hillman

SUBJECT: Boeing Realty Corp., Bldg. C-6 Facility, Data Validation

Dear Mr. Hillman,

Enclosed are the final validation reports for the fraction listed below. These SDGs were received on October 20, 2005. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 14166:

SDG#

Fraction

E5I200157, E5I210421, Volatiles E5I220419

The data validation was performed under Tier 1, Tier 2 and Tier 3 guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998

Please feel free to contact us if you have any questions.

Sincerely,

Stella S. Cuenco

Project Manager/Senior Chemist

		T T						Ī	1	Ī	ī	T	Ī	T	T	T	ī	Г				F		Ī	_	T	=	Т	T	T	1	<u> </u>	
			s >					_	 			 L	-	1			\vdash			-	_				\dashv	-	\dashv	\dashv	\dashv	\dashv		-	
			s N					_	 				-	<u> </u>	<u> </u>		-			-					\dashv	\dashv	\dashv	\dashv	\dashv	\dashv		-	
			×				-	├-		ļ	 		\vdash	\vdash	_										\dashv	\dashv	\dashv	\dashv	\dashv	\dashv		\dashv	νpd
	ि		s v				_	-					_	-	_				_	<u> </u>				\dashv		\dashv	-	+	\dashv	-			.4166ST.wpd
	CA)		\vdash				-	-				 _		┢			\vdash							\dashv	\dashv	-	+	\dashv	\dashv	-	_		416
	uce		γ .						-		_	_			_		-		 	<u> </u>	_				\dashv	\dashv	+	\dashv	\dashv	\dashv	\dashv	-	
	Torrance,		S					-	-	-		_		-	_	-	_								\dashv	-	+	\dashv	\dashv	\dashv			
	12		× ×					_				 _		-		-			-	<u> </u>	_				\dashv	\dashv	-	\dashv	\dashv	-	-	\dashv	
	ity,		S				_	-				 		-			_								-	\dashv	\dashv	\dashv	\dashv	-	-	-	
	Facility,		S W					_	 			 		\vdash	-			-	_					-	\dashv	+	\dashv	\dashv	\dashv	+		-	
	6 F		-	_				_	_		_		\vdash	-			\vdash							\dashv	\dashv	-	\dashv	\dashv	\dashv	-	-	-	
	ပ္		≥										-	_			 		 			Н		\dashv	\dashv	+	\dashv	\dashv	\dashv	_	-	-	
	Former		S ^				_	_	-				\vdash									Н		-	-	\dashv	\dashv	\dashv	\dashv	+	┿	-	
	ō		S	-					-		_										ļ			-		\dashv	+	-		\dashv		1	
	J., F		-	-				_	_	\vdash	_						<u> </u>			_			-	-	-	+	+	\dashv	+	\dashv		-	
	Corp.,		S W	_				_		_	-		_	_						_		Н	_		\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	-	-	
	ty C		8										-	-			_								1	\dashv	+	\dashv	\dashv	\dashv	-	-	UP's.
	Realty		s V					ļ					-				┢	\vdash							-	+	+	┪	\dashv	-	-		Sample counts do not include MS, MSD, or DUP's.
1			γ					┢				 -	<u> </u>				_	_					_	\dashv	\dashv	-	_	┪	\dashv	\dashv	-	╢	, MSE
Attachment 1	lement, Inc. / Boeing		s v					\vdash					_	_			-							\dashv	\dashv		\dashv	\dashv	\dashv	-	-	41	de MS
achn	Bo		Α.					\vdash			\vdash		_		-										\dashv	1	┪	_	\dashv	\dashv		╢	inclu
Att	C. /		S										┢	\vdash							 -				$\neg \dagger$	\dashv	\dashv	\dashv	\dashv	\dashv	-	-	do Jou
	t, In		3					<u> </u>			\vdash		┢	\vdash	-										\dashv	\dashv	\dashv	+	\dashv	\dashv	-	-	ounts
	en		S										\vdash	\vdash	\vdash										\dashv	\dashv	\dashv	_	\dashv	\dagger	-	╢	ple co
	Jem		3					<u> </u>			_		<u> </u>	\vdash											1	$\neg \dagger$	1		\dashv	\dashv	-	-	. Sarr
	naç		S					 					┢												\dashv	十	7	1	1	十	-	,	Jation
	Ma		≥										┢												1	1	T	1	1	\dagger	-	,	II valic
	nal		S	_									┢	<u> </u>											\exists	\top	1	1	\top	T	-	, 	Tier
	me		≥	Terl																					ı		1		T	T	- c	<u> </u>	alls are
	ron	A JB	S	0	0	0																								\top	-		herce
	N	VOA (8260B)	Š	-	-	-																			1	1	1	T		1	٣.	1	(all ot
	it E			705	1/05																												lation
	(Ta	(3) DATE DUE		10/20/05 11/10/05	10/20/05 11/10/05	10/20/05 11/10/05																			ł	l	l						II valic
	99	<u> Б</u> 6;		3/05	3/05	3/05																								1		1	Tier
	141	DATE REC'D		10/20	10/20	10/20																											dicate
	LDC #14166 (Tait Environmenal Manag																																ells in
		#	<u>=</u>	157)421	9419																									ی ا		Shaded cells indicate Tier III validation (all other cells are Tier II validation).
		SDG#	Water/Soil	E51200157	E51210421	E51220419																				١					B/SC		Sha
				ш́	ய்	ய்																											
		DC	Matrix:	_										 						-		\vdash	-	\dashv	\dashv	+	+	\dashv	+	+	Total		
<u> </u>		<u> </u>	Σ	∢	В	ပ		L	<u> </u>	Ш				<u> </u>				L													عرا		

Boeing Realty Corp., Former C-6 Facility, Torrance, CA Data Validation Reports LDC# 14166

Volatiles

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Boeing Realty Corp, Former C-6 Facility, Torrance CA

Collection Date: September 19, 2005

LDC Report Date: October 28, 2005

Matrix: Water

Parameters: Volatiles

Validation Level: Tier 1

Laboratory: Severn Trent Laboratories

Sample Delivery Group (SDG): E5I200157

Sample Identification

TMW_14_WG091905_0001

Introduction

This data review covers one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8260B for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified a P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Level II.

III. Initial Calibration

Initial calibration data were not reviewed for Level II.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Level II.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

Internal standards data were not reviewed for Level II.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

No field blanks were identified in this SDG.

Boeing Realty Corp, Former C-6 Facility, Torrance CA Volatiles - Data Qualification Summary - SDG E5I200157

No Sample Data Qualified in this SDG

Boeing Realty Corp, Former C-6 Facility, Torrance CA Volatiles - Laboratory Blank Data Qualification Summary - SDG E5I200157

No Sample Data Qualified in this SDG

Tait Environmental

Client Sample ID: TMW_14_WG091905_0001

GC/MS Volatiles

Lot-Sample #...: E5I200157-006 Work Order #...: HKXXL1AA Matrix...... W

 Date Sampled...:
 09/19/05 13:30
 Date Received...:
 09/19/05 17:00

 Prep Date.....:
 09/22/05
 Analysis Date...:
 09/22/05

 Prep Batch #...:
 5265650
 Method......:
 SW846 8260B

		REPORTIN	īG
PARAMETER	RESULT	LIMIT	UNITS
Dichlorodifluoromethane	ND	1.0	ug/L
Chloromethane	ND	2.0	ug/L
Chloroethane	ND	2.0	ug/L
Bromomethane	ND	2.0	ug/ь
Trichlorofluoromethane	ND	2.0	ug/L
1,1,2-Trichlorotrifluoro-	ND	1.0	ug/L
ethane			
1,1-Dichloroethene	ND	1.0	ug/L
Methylene chloride	ND	1.0	ug/L
Methyl tert-butyl ether	ND	1.0	ug/L
Carbon disulfide	ND	1.0	ug/L
Acetone	ND	10	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
2,2-Dichloropropane	ND	1.0	ug/L
cis-1,2-Dichloroethene	0.39 J	1.0	ug/L
Chloroform	1.6	1.0	ug/L
Bromochloromethane	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
2-Butanone	MD	5.0	ug/L
1,1-Dichloropropene	ND	1.0	ug/L
Carbon tetrachloride	1.5	0.50	ug/L
1,2-Dibromoethane	ND	1.0	ug/L
Benzene	ND	1.0	ug/L
Trichloroethene	7.3	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
4-Methyl-2-pentanone	ND	5.0	ug/L
Toluene	0.49 J	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	0.50	ug/L
Tetrachloroethene	1.7	1.0	ug/L
2-Hexanone	מא	5.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
l,1,1,2-Tetrachloroethane	ND	1.0	ug/L
Sthylbenzene	ND	1.0	ug/L
Jinyl chloride	ND	0.50	ug/L
(ylenes (total)	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L

(Continued on next page)

N 102805

Tait Environmental

Client Sample ID: TMW_14_WG091905_0001

GC/MS Volatiles

Lot-Sample #: E5I200157-006	Work Order #: HKXXL1AA	Matrix W
------------------------------------	------------------------	----------

		REPORTIN	I G
PARAMETER	RESULT	LIMIT	UNITS
Isopropylbenzene	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
1,2,3-Trichloropropane	ND	1.0	ug/L
n-Propylbenzene	ND	1.0	ug/L
Bromobenzene	ND	1.0	ug/L
1,3,5-Trimethylbenzene	ND	1.0	ug/L
2-Chlorotoluene	ND	1.0	ug/L
4-Chlorotoluene	ND	1.0	ug/L
tert-Butylbenzene	ND	1.0	ug/L
1,2,4-Trimethylbenzene	ND	1.0	ug/L
sec-Butylbenzene	ND	1.0	ug/L
p-Isopropyltoluene	ND	1.0	ug/L
1,3-Dichlorobenzene	ND	1.0	ug/L
1,4-Dichlorobenzene	ND	1.0	ug/L
n-Butylbenzene	ND	1.0	ug/L
1,2-Dichlorobenzene	ND	1.0	ug/L
1,2-Dibromo-3-chloro- propane	ND	2.0	ug/L
,2,4-Trichloro- benzene	ND	1.0	ug/L
Mexachlorobutadiene	ND	1.0	ug/L
1,2,3-Trichlorobenzene	ND	1.0	ug/L
Acrolein	ND	20	ug/L
Acrylonitrile	ND	20	ug/L
Iodomethane	ND	2.0	ug/L
2-Chloroethyl vinyl ether	ND	5.0	uq/L
etrahydrofuran	ND	10	ug/L
anyl acetate	ND	5.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
romofluorobenzene	91	(75 - 130	0}
,2-Dichloroethane-d4	95	(65 - 135	5}
oluene-d8	95	(80 - 130	3.3

J Estimated result. Result is less than RL.

N102805

Date: 10/26 /05 **VALIDATION COMPLETENESS WORKSHEET** LDC #: 14166A1 Tier 1 Page: \of | SDG #: E5I200157 Reviewer: 3V4 Laboratory: Severn Trent Laboratories, Inc. 2nd Reviewer: ________

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Technical holding times / CGC	_/	Sampling dates: 9/19/05
11.	GC/MS Instrument performance check	N	·
111.	Initial calibration	N	
IV.	Continuing calibration	N	
V.	Blanks		
VI.	Surrogate spikes		
VII.	Matrix spike/Matrix spike duplicates	✓	
VIII.	Laboratory control samples		
IX.	Regional Quality Assurance and Quality Control	N	
Χ.	Internal standards	N	
XI.	Target compound identification	N	
XII.	Compound quantitation/CRQLs	N	
XIII.	Tentatively identified compounds (TICs)	N	
XIV.	System performance	N	
XV.	Overall assessment of data	AV	
XVI.	Field duplicates	Ν	
XVII.	Field blanks	1W ^C	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate
TB = Trip blank

EB = Equipment blank

Validated Samples:

	<u>water</u>				
1	TMW_14_WG091905_0001	11	21	31	
2		12	22	32	
3		13	23	33	
4		14	24	34	
5		15	25	35	
6		16	26	36	
7		17	27	37	
8		18	28	38	
9		19	29	39	
10		20	30	40	

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Boeing Realty Corp, Former C-6 Facility, Torrance CA

Collection Date:

September 21, 2005

LDC Report Date:

October 28, 2005

Matrix:

Water

Parameters:

Volatiles

Validation Level:

Tier 2

Laboratory:

Severn Trent Laboratories

Sample Delivery Group (SDG): E5I210421

Sample Identification

MWB020_WG092105_0001

Introduction

This data review covers one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8260B for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified a P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 15.0% for each individual compound and less than or equal to 30.0% for calibration check compounds (CCCs).

For the purposes of technical evaluation, all compounds were evaluated against the 30.0% (%RSD) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria with the following exceptions:

Date	Compound	%RSD	Associated Samples	Flag	A or P
9/21/05	Tetrahydrofuran	36.5	All samples in SDG E5l210421	J (all detects) UJ (all non-detects)	Α

Average relative response factors (RRF) for all volatile target compounds and system performance check compounds (SPCCs) were within method and validation criteria with the following exceptions:

Dale	Compound	RRF (Limita)	Associated Samples	Flag	AorP
9/21/05	Acrolein Acetone Acrylonitrile 2-Butanone Tetrahydrofuran 2-Chloroethylvinyl ether	0.02111 (≥0.05) 0.02250 (≥0.05) 0.03397 (≥0.05) 0.04393 (≥0.05) 0.03144 (≥0.05) 0.03826 (≥0.05)	All samples in SDG E5I210421	J (all detects) UJ (all non-detects)	A

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs).

For the purposes of technical evaluation, all compounds were evaluated against the 25.0% (%D) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria.

All of the continuing calibration RRF values were within method and validation criteria with the following exceptions:

Date	Compound	RRF (Limits)	Associated Samples	Flag	A or P
9/21/05	Acrolein Acetone Acrylonitrile 2-Butanone Tetrahydrofuran 2-Chloroethylvinyl ether	0.02231 (≥0.05) 0.02455 (≥0.05) 0.03611 (≥0.05) 0.04426 (≥0.05) 0.02556 (≥0.05) 0.03180 (≥0.05)	All samples in SDG E5I210421	J (all detects) UJ (all non-detects)	А

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID Compound		%R (Limits)	Associated Samples	Flag	A or P	
LCS5266561 Bromomethane		157 (60-140)	All samples in SDG E5I210421	J (all detects)	Р	

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

No field blanks were identified in this SDG.

Boeing Realty Corp, Former C-6 Facility, Torrance CA Volatiles - Data Qualification Summary - SDG E5I210421

SDG	Sample	Compound	Flag	A or P	Reason
E5 210421	MWB020_WG092105_0001	Tetrahydrofuran	J (all detects) UJ (all non-detects)	A	Initial calibration (%RSD)
E5l210421	MWB020_WG092105_0001	Acrolein Acetone Acrylonitrile 2-Butanone Tetrahydrofuran 2-Chloroethylvinyl ether	J (all detects) UJ (all non-detects)	А	Initial calibration (RRF)
E5I210421	MWB020_WG092105_0001	Acrolein Acetone Acrylonitrile 2-Butanone Tetrahydrofuran 2-Chloroethylvinyl ether	J (all detects) UJ (all non-detects)	A	Continuing calibration (RRF)
E5l210421	MWB020_WG092105_0001	Bromomethane	J (all detects)	Р	Laboratory control samples (%R)

Boeing Realty Corp, Former C-6 Facility, Torrance CA Volatiles - Laboratory Blank Data Qualification Summary - SDG E5I210421

No Sample Data Qualified in this SDG

Tait Environmental

Client sample ID: MWB020_WG092105_0001

GC/MS Volatiles

 Lot-Sample #...:
 E551210421-010
 Work Order #...:
 HK4KG1AA
 Matrix.......
 W

 Date Sampled...:
 09/21/05 12:55
 Date Received...:
 09/21/05 17:10

 Prep Date.....:
 09/23/05
 Analysis Date...:
 09/23/05

 Prep Batch #...:
 5266561
 Method.......:
 SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Dichlorodifluoromethane	ND	1.6	uq/L
Chloromethane	ND	3.1	ug/L
Chloroethane	ND	3.1	ug/L
Bromomethane	ND	3.1	ug/L
Trichlorofluoromethane	ND	3.1	ug/L
1,1,2-Trichlorotrifluoro-	ND	1.6	ug/L
ethane			•
1,1-Dichloroethene	ND	1.6	ug/L
Methylene chloride	0.70 J	1.6	ug/L
Methyl tert-butyl ether	ND	1.6	ug/L
Carbon disulfide	ND	1.6	ug/L
Acetone	ND UJ	16	ug/L
trans-1,2-Dichloroethene	3.7	1.6	ug/L
1,1-Dichloroethane	3.6	1.6	ug/L
2,2-Dichloropropane	ND	1.6	ug/L
cis-1,2-Dichloroethene	110	1.6	ug/L
Chloroform	0.85 J	1.6	ug/L
Bromochloromethane	ND	1.6	\mathtt{ug}/\mathtt{L}
1,1,1-Trichloroethane	ND	1.6	ug/L
2-Butanone	TN DN	7.8	ug/L
1,1-Dichloropropene	ND	1.6	ug/L
Carbon tetrachloride	ND	0.78	ug/L
1,2-Dibromoethane	ND	1.6	ug/L
Benzene	ND	1.6	ug/L
Trichloroethene	26	1.6	ug/L
Bromodichloromethane	ND	1.6	ug/L
4-Methyl-2-pentanone	ND	7.8	ug/L
Toluene	ND	1.6	ug/L
1,1,2-Trichloroethane	ND	1.6	ug/L
1,2-Dichloroethane	ND	0.78	ug/L
Tetrachloroethene	ND	1.6	ug/L
2-Hexanone	ND	7.8	ug/L
Dibromochloromethane	ND	1.6	ug/L
Chlorobenzene	ND	1.6	ug/L
1,1,1,2-Tetrachloroethane	ND	1.6	ug/L
Ethylbenzene	ND	1.6	ug/L
Vinyl chloride	ND	0.78	ug/L
Xylenes (total)	ND	1.6	ug/L
styrene	ND	1.6	ug/L
Bromoform	ND	1.6	ug/L

(Continued on next page)

a 102805

Tait Environmental

Client Sample ID: MWB020_WG092105_0001

GC/MS Volatiles

Lot-Sample #...: E5I210421-010 Work Order #...: HK4KG1AA Matrix...... W

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
sopropylbenzene	ND	1.6	ug/L
,1,2,2-Tetrachloroethane	ND	1.6	ug/L
,2,3-Trichloropropane	ND	1.6	ug/L
-Propylbenzene	ND	1.6	ug/L
romobenzene	ND	1.6	ug/L
,3,5-Trimethylbenzene	ND	1.6	ug/L
-Chlorotoluene	ND	1.6	ug/L
-Chlorotoluene	ND	1.6	ug/ь
ert-Butylbenzene	ND	1.6	ug/L
,2,4-Trimethylbenzene	ND	1.6	ug/L
ec-Butylbenzene	ND	1.6	ug/L
-Isopropyltoluene	ND '	1.6	ug/L
,3-Dichlorobenzene	ND	1.6	ug/L
,4-Dichlorobenzene	ND	1.6	ug/L
-Butylbenzene	ND	1.6	ug/L
, 2-Dichlorobenzene	ND	1.6	ug/L
,2-Dibromo-3-chloro- propane	ND	3.1	ug/L
,2,4-Trichloro-	ND	1.6	ug/L
benzene			
exachlorobutadiene	ND	1.6	ug/L
2,3-Trichlorobenzene	ND	1.6	ug/L
crolein	ND UT	31	ug/L
rylonitrile	ND 1	31	ug/L
domethane	ND	3.1	ug/L
Chloroethyl vinyl ether	CN DN	7.8	ug/L
etrahydrofuran	ND 🌡	16	ug/L
inyl acetate	ND	7.8	ug/L
	PERCENT	RECOVERY	
URROGATE	RECOVERY	LIMITS	_
romofluorobenzene	87	(75 - 130)	1
, 2-Dichloroethane-d4	97	(65 - 135)	
oluene-d8	95	(80 - 130)	

J Estimated result. Result is less than RL.

NOTE (S):

1 /02808

LDC #: 14166B1 VA	LIDATION COMPLETENESS WORKSHEET	Date: 10/24/v ≤
SDG #: E5I210421	Tier 2	Page: \(\) of \(\)_
Laboratory: Severn Trent Laborator	ies, Inc.	Reviewer: <u> </u>
METTION OOMOVELESIS (EDA O		2nd Reviewer:

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Technical holding times	A	Sampling dates: 5 /21 /05
11.	GC/MS Instrument performance check	A	,
III.	Initial calibration	S.M.	
IV.	Continuing calibration	WZ	
V.	Blanks	A	
VI.	Surrogate spikes	Α	
VII.	Matrix spike/Matrix spike duplicates	AA	None/p non dint
VIII.	Laboratory control samples	W2	LCS
IX.	Regional Quality Assurance and Quality Control	N	
X.	Internal standards	Α	·
XI.	Target compound identification	N	
XII.	Compound quantitation/CRQLs	N	
XIII.	Tentatively identified compounds (TICs)	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	
XVI.	Field duplicates	N	
XVII.	Field blanks	N	TB = TB_TA 170 92105_0001

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate

FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

Water

1	MWB020_WG092105_0001	11	2	21	31	
2	MB 5266561	12	2	22	32	
3		13	2	23	33	
4		14	2	24	34	
5		15	2	25	35	
6		16	2	26	36	
7		17	2	27	37	·
8		18	2	28	38	
9		19	2	29	39	
10		20	3	30	40	

TARGET COMPOUND WORKSHEET

IETHOD: VOA (EPA SW 846 Method 8260B)

A. Chloromethane*	S. Trichloroethene	KK. Trichlorofluoromethane	CCC. tert-Butylbenzene	UUU. 1,2-Dichlorotetrafluoroethane
B. Bromomethane	T. Dibromochloromethane	LL. Methyl-tert-butyl ether	DDD. 1,2,4-Trimethylbenzene	VVV. 4-Ethytoluene
C. Vinyl choride**	U. 1,1,2-Trichloroethane	MM. 1,2-Dibromo-3-chloropropane	EEE sec-Eutylbenzene	WWW. Ethanol
D. Chlorcethane	V. Benzene	NN. Methyl ethyl ketone	FFF. 1,3-Dichlorobenzene	XXX. Di-Isopropyl either
E. Methyene chloride	W. trans-1,3-Dichloropropene	OO. 2,2-Dichloropropane	GGG, p-lanpropyltoluene	YYY. tert-Butanof
F. Acetone	X. Bromoform*	PP. Bromochloromethane	HHH, 1,4-Dichlorobenzene	ZZZ. tert-Butyl alcohol
G. Carbon disulide	Y, 4-Methyl-2-pentanone	QQ. 1,1-Dichloropropene	III. n-Butybenzane	AAAA. Ethyl tert-butyl ether
H. 1,1-Dichloroethene**	Z. 2-Hexanone	RR, Dibromomethane	JJJ. 1,2-Eichlorobenzene	BBBB, tert-Arryl methyl ether
I. 1,1-Dichloroethane*	AA. Tetrachloroethene	SS, 1,3-Dichloropropane	KKK. 1,2,4-Trichlorobenzene	CCCC.1-Chlorohexane
J. 1,2-Dichloroethene, total	BB. 1,1,2,2-Tetrachioroethans*	TT. 1,2-Dibromoethane	LLL. Hexachlorobutaclene	DDDD. Isopropyl alcohol
K. Chloroform"	CC. Toluene**	UU. 1,1,1,2-Tetrachloroethane	MMM. Naphihalene	EEEE, Acetonitrile
L. 1,2-Dichloroethane	DD. Chlorobenzene*	W. Isopropylbenzene	NNN. 1,2,3-Trichlorobenzene	FFF. Acrolein
M. 2-Butanone	EE. Ethylbenzene↔	WW. Bromobenzene	OOO, 1,3,5-Trichlordbenzene	GGGG. Actylonitrite
N. 1,1,1-Trichloroethane	FF. Styrene	XX. 1,2,3-Trichloropropane	PPP, trans-1,2-Dichloroethene	HHHH: 1,4-Dloxane
O. Carbon tetrachloride	GG. Xylenes, total	YY, n-Propylbenzene	QQQ. ca-1,2-Dichloroethene	IIII. Isobutyl alcohol
P. Bromodichloromethane	HH. Vinyl acetate	ZZ. 2-Chlorotoluene	RRR, m.p-Xylenes	JJJJ. Melhacryfonltrile
Q. 1,2-Dichloropropane**	II. 2-Chloroethylvinyl ether	AAA. 1,3,5-Trimethylbenzene	8S8. o Xylene	KKKK, Propionitrile
R. cis-1,3-Dichloropropene	JJ. Dichtorodifluoromethane	BBB. 4-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	LLL Tetrahydraturan

* = System performance check compounds (SPCC) for RRF; ** = Calibration check compounds (CCC) for %RSD.

E5 I 21042 LDC #: 14166 B1

SDG #:

VALIDATION FINDINGS WORKSHEET Initial Calibration

Page: ___of__ Reviewer 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". $\overline{\mathcal{K}}$ N N/A Did the laboratory perform a 5 point calibration prior to sample analysis?

Were percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCC's and SPCC's?

Was a curve fit used for evaluation? If yes, what was the acceptance criteria used for evaluation?_ Y N N/A

Did the initial calibration meet the acceptance criteria? Y (N) N/A

Y (N N/A

Were all %RSDs and RRFs within the validation criteria of ≤30 %RSD and ≥0.05 RRF?

*	Date	Standard ID	Compound	Finding %RSD (Limit: <30.0%)	Finding RRF (Limit: >0.05)	Associated Samples	Qualifications
	9/21/65	ICAL	444		0.02111	A11 + B1K	JUSA
					0.62250	ē	
			GG 66		0.03347		
		•	M		0.04393		
			LLLL	36.5	0.03144		
		,	II		D. 63826		
-							

SDG #: EST210421 LDC #: 14-16(8)

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Reviewer: 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y N. N/A

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's ?

Were all %D and RRFs within the validation criteria of ≤25 %D and ≥0.05 RRF?

N N/A

	-			Clariffication of the			
	Date	· Standard ID	Compound	(Umlt: ≤25.0%)	(Umit: >0.05)	Associated Samples	Ousifications
	9/22 65	&S276C	444		0.00212	11 1 11/	
			4		0.02 4 55	. #II + DIK	J/ UT /A
			6666		11960 0	,	
			W .		p. 64426		
			1717		0. 02.556		
			LI		0. 63180		
_						٠	
_							
1							
	,						
				,			
			·				
- T							
T			•				
- 11			•				
- [
ı							
í							
i							
1						4	et a
1							
H							

SDG #: F57 21042 LDC #: 14/66 B1

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page: 2nd Reviewer: Reviewer:

- of

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions arswered "N". Not applicable questions are identified as "N/A",

Y N N/A

Was a LCS required? Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?

	,		,	ī	_			_	_	Τ					T		П	T	7	$\overline{}$			$\overline{1}$	\neg
Qualifications	5 dots /p																							
Associated Samples	A11 + 21K																							
RPD (Limits)		^	((_	^	(()	()	()	()	()	()	()	(()	(()	()	•	·	()	(()
RPE) (()	(<u> </u>) [_))	`) [_	((^	î	_	_)
LCSD %R (Limits)))	•)))	•))	•))))	_)))	<u> </u>	_	J		J)
LCS %R (Limits)	157 (60-140)	_	(()	()	()	()	()	()	()	()	()	()	()	(()	()	()))	•)	()
Compound	8																							
TCS/TCSD ID	165 \$266561		· ·																~~ min					
Date																and the second s		-						
34.	. 1				. 1										1		11)		1	1		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Boeing Realty Corp, Former C-6 Facility, Torrance CA

Collection Date:

September 22, 2005

LDC Report Date:

October 27, 2005

Matrix:

Water

Parameters:

Volatiles

Validation Level:

Tier 3

Laboratory:

Severn Trent Laboratories

Sample Delivery Group (SDG): E51220419

Sample Identification

TMW 07_WG092205_0001

Introduction

This data review covers one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8260B for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified a P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 15.0% for each individual compound and less than or equal to 30.0% for calibration check compounds (CCCs).

For the purposes of technical evaluation, all compounds were evaluated against the 30.0% (%RSD) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria with the following exceptions:

Date	Compound	%RSD	Associated Samples	Flag	A or P
9/16/05	2-Chloroethylvinyl ether	69.4	All samples in SDG E5l220419	J (all detects) UJ (all non-detects)	А

Average relative response factors (RRF) for all volatile target compounds and system performance check compounds (SPCCs) were within method and validation criteria with the following exceptions:

Date	Compound	RRF (Limits)	Associated Samples	Flag	AorP
9/16/05	Acrolein Acetone Acrylonitrile 2-Butanone Tetrahydrofuran 2-Chloroethylvinyl ether	0.01843 (≥0.05) 0.02347 (≥0.05) 0.03443 (≥0.05) 0.03734 (≥0.05) 0.01672 (≥0.05) 0.00844 (≥0.05)	All samples in SDG E5l220419	J (all detects) UJ (all non-detects)	A

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs).

For the purposes of technical evaluation, all compounds were evaluated against the 25.0% (%D) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
9/27/05	2-Chloroethylvinyl ether Bromomethane lodomethane	114 32.0 38.2	All samples in SDG E5l220419	J (all detects) UJ (all non-detects)	А

All of the continuing calibration RRF values were within method and validation criteria with the following exceptions:

Date	Compound	RRF (Limits)	Associated Samples	Flag	A or P
9/27/05	Acrolein Acetone Acrylonitrile 2-Butanone Tetrahydrofuran 2-Chloroethylvinyl ether 1,2-Dibromo-3-chloropropane	0.01729 (≥0.05) 0.02114 (≥0.05) 0.03157 (≥0.05) 0.03502 (≥0.05) 0.01390 (≥0.05) 0.01804 (≥0.05) 0.04416 (≥0.05)	All samples in SDG E5I220419	J (all detects) UJ (all non-detects)	A

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
LCS5271703	Bromomethane	143 (60-140)	All samples in SDG E5I220419	J (all detects)	Р

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria.

XIII. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not reported by the laboratory.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

No field blanks were identified in this SDG.

Boeing Realty Corp, Former C-6 Facility, Torrance CA Volatiles - Data Qualification Summary - SDG E5I220419

SDG	Sample	Compound	Flag	A or P	Reason
E5I220419	TMW_07_WG092205_0001	2-Chloroethylvinyl ether	J (all detects) UJ (all non-detects)	А	Initial calibration (%RSD)
E5l220419	TMW_07_WG092205_0001	Acrolein Acetone Acrylonitrile 2-Butanone Tetrahydrofuran 2-Chloroethylvinyl ether	J (all detects) UJ (all non-detects)	А	Initial calibration (RRF)
E5l220419	TMW_07_WG092205_0001	2-Chloroethylvinyl ether Bromomethane Iodomethane	J (all detects) UJ (all non-detects)	А	Continuing calibration (%D)
E5I220419	TMW_07_WG092205_0001	Acrolein Acetone Acrylonitrile 2-Butanone Tetrahydrofuran 2-Chloroethylvinyl ether 1,2-Dibromo-3-chloropropane	J (all detects) UJ (all non-detects)	А	Continuing calibration (RRF)
E5l220419	TMW_07_WG092205_0001	Bromomethane	J (all detects)	Р	Laboratory control samples (%R)

Boeing Realty Corp, Former C-6 Facility, Torrance CA Volatiles - Laboratory Blank Data Qualification Summary - SDG E5I220419

No Sample Data Qualified in this SDG

Tait Environmental

Client Sample ID: TMW_07_WG092205_0001

GC/MS Volatiles

Matrix....: WG Lot-Sample #...: E51220419-006 Work Order #...: HK7QX1AA

Date Sampled...: 09/22/05 10:55 Date Received..: 09/22/05 17:35 Prep Date...: 09/27/05 Analysis Date..: 09/28/05 Method..... SW846 8260B Prep Batch #...: 5271703

Frep Bacch # 52.1705			
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Dichlorodifluoromethane	ND	20	ug/L
Chloromethane	ND	40	ug/L
Chloroethane	ND	40	ug/L
Bromomethane	ND 43	40	ug/L
Trichlorofluoromethane	ND	40	ug/L
1,1,2-Trichlorotrifluoro-	ND	20	ug/L
ethane			
1,1-Dichloroethene	35	20	ug/L
Methylene chloride	ND	20	ug/L
Methyl tert-butyl ether	ND	20	ug/L
Carbon disulfide	ND	20	ug/L
Acetone	ND VI	200	ug/L
trans-1,2-Dichloroethene	ND	20	ug/L
1,1-Dichloroethane	ND	20	ug/L
2,2-Dichloropropane	ND	20	ug/L
cis-1,2-Dichloroethene	ND	20	ug/L
Chloroform	ND	20	ug/L
Bromochloromethane	ND	20	ug/L
1,1,1-Trichloroethane	ND	20	ug/L
2-Butanone	ND UJ	100	ug/L
1,1-Dichloropropene	NTD	20	ug/L
Carbon tetrachloride	ND	10	ug/L
1,2-Dibromoethane	ND	20	ug/L
Benzene	ND	20	ug/L
Trichloroethene	2000	20	ug/L
Bromodichloromethane	ND	20	ug/L
4-Methyl-2-pentanone	ND	100	ug/L
Toluene	ND	20	ug/L
1,1,2-Trichloroethane	7.2 J	20	ug/L
1,2-Dichloroethane	ND	10	ug/L
Tetrachloroethene	ND	20	ug/L
2 Hexanone	NID	100	ug/L
Dibromochloromethane	ND	20	ug/L
Chlorobenzene	ND	20	ug/L
1,1,1,2-Tetrachloroethane	ND	20	ug/L
Ethylbenzene	ND	20	ug/L
Vinyl chloride	ND	10	ug/L
Xylenes (total)	ND	20	ug/L
styrene	NID	20	ug/L
Bromoform	ND	20	ug/L

(Continued on next page)

N 102805

Tait Environmental

Client Sample ID: TMW_07_WG092205_0001

GC/MS Volatiles

Lot-Sample #: E5I220419-006	Work Order #: HK7QX1AA	Matrix WG
-----------------------------	------------------------	-----------

		REPORTIN	G
PARAMETER	RESULT	LIMIT	UNITS
Isopropylbenzene	ND ND	20	ug/L
1,1,2,2-Tetrachloroethane	ND	20	ug/L
1,2,3-Trichloropropane	ND	20	ug/L
n-Propylbenzene	ND	20	ug/L
Bromobenzene	ND	20	ug/L
1,3,5-Trimethylbenzene	ND	20	ug/L
2-Chlorotoluene	ND	20	ug/L
4-Chlorotoluene	ND	20	ug/L
tert-Butylbenzene	ND	20	ug/L
1,2,4-Trimethylbenzene	ND	20	${\tt ug/L}$
sec-Butylbenzene	ND	20	ug/L
p-Isopropyltoluene	ND	20	ug/L
1.3-Dichlorobenzene	ND	20	ug/L
1,4-Dichlorobenzene	ND	20	ug/L
n-Butylbenzene	ND	20	ug/L
1,2-Dichlorobenzene	ND	20	ug/L
1,2-Dibromo-3-chloro-	ND VJ	40	ug/L
propane			
1,2,4-Trichloro-	N D	20	ug/L
benzene			
Hexachlorobutadiene	N D	20	ug/L
1,2,3-Trichlorobenzene	ND	20	ug/L
Acrolein	ND UJ	400	ug/L
Acrylonitrile	ND J	400	ug/L
Iodomethane	TLV DIN	40	ug/L
2-Chloroethyl vinyl ether	ND UZ	100	ug/L
Tetrahydrofuran	840 J	200	ug/L
Vinyl acetate	ND	100	ug/L
a many and a management of the same of the			
	PERCENT	RECOVER	Y
SURROGATE	RECOVERY	LIMITS	
Bromofluorobenzene	84	⟨75 - 1 :	
1,2-Dichloroethane-d4	94	(65 - 1	
Toluene-d8	106	(80 - 1	30)

J Estimated result. Result is less than RL.

K/02805

LDC #: 14166C1	VALIDATION COMPLETENESS WORKSHEET	Date: 10/26/05
SDG #: E5I220419	Tier 3	Page: of)
Laboratory: Severn Trent L	aboratories, Inc.	Reviewer: No
METHOD: GC/MS Volatile	s (EDA SW 846 Method 8260B)	2nd Reviewer:

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Technical holding times	Α	Sampling dates: 9/22/05
11.	GC/MS Instrument performance check	Ą	
111.	Initial calibration	SW	
IV.	Continuing calibration	M2	
V.	Blanks	Α	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	→ Å	None 1912 (nondient sample)
VIII.	Laboratory control samples	SM	LCS
IX.	Regional Quality Assurance and Quality Control	N	
Χ.	Internal standards	A	
XI.	Target compound identification	Α	
XII.	Compound quantitation/CRQLs	A	
XIII.	Tentatively identified compounds (TICs)	N	
XIV.	System performance	Ä	
XV.	Overall assessment of data	A	
XVI.	Field duplicates	N	
XVII.	Field blanks	N	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

Water

†	IMW_07_WG092205_0001	11	21	31	
2	MB \$271707	12	22	32	
3		13	23	33	
4		14	24	34	-
5		15	25	35	
6		16	26	36	
7		17	27	 37	
8	,	18	28	38	
9		19	29	39	
10		20	30	40	

VALIDATION FINDINGS CHECKLIST

Page: 1 of $\frac{\nu}{NU}$ Reviewer: $\frac{\nu}{NU}$ 2nd Reviewer: $\frac{\nu}{NU}$

Method: Volatiles (EPA SW 846 Method 8260B)

Method: Volatiles (EPA SW 846 Method 8260B)				
Validation Area	Yes	No	NA	Findings/Comments
). Technical holding times		i dire		
All technical holding times were met.		,		,
Cooler temperature criteria was met.				
II GCMS Instrument performance check				
Were the BFB performance results reviewed and found to be within the specified criteria?	/			
Were all samples analyzed within the 12 hour clock criteria?				
m Initial calibration	1			
Did the laboratory perform a 5 point calibration prior to sample analysis?	/			
Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?	/			
Was a curve fit used for evaluation?	<u> </u>	/		
Did the initial calibration meet the curve fit acceptance criteria of > 0.990?		<u> </u>	/	
Were all percent relative standard deviations (%RSD) ≤ 30% and relative response factors (RRF) > 0.05?	,			
IV. Continuing calibration.	42+1			
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	1	4		
Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?	/			
Were all percent differences (%D) ≤ 25% and relative response factors (RRF) ≥		/		
0.05? V/Blanks				
Was a method blank associated with every sample in this SDG?	K			
Was a method blank analyzed at least once every 12 hours for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				
M. Surrogate spikes		1	T	
Were all surrogate %R within QC limits?			<u> </u>	
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?			/	
VII. Matrix spike/Matrix spike duplicates	T T		T	
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.		/		1,
Was a MS/MSD analyzed every 20 samples of each matrix?	-	-	 	
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
VIII. Laboratory control samples.				
Was an LCS analyzed for this SDG?	1,/	<u>1</u>	L	

LDC #: 14166 C1 SDG #: 551220419

VALIDATION FINDINGS CHECKLIST

Page: Yof V Reviewer: NV 2nd Reviewer: NV

Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per analytical batch?	/		<u>. </u>	
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/	¥		
IX. Regional Quality Assurance and Quality Control	T			
Were performance evaluation (PE) samples performed?				
Were the performance evaluation (PE) samples within the acceptance limits?				
X. Internal standards				CONTROL OF THE STATE OF THE STA
Were internal standard area counts within -50% or +100% of the associated calibration standard?	/			
Were retention times within + 30 seconds of the associated calibration standard?				
XI. Target compound identification (C. 14)	143	#- JA	3 4 5 1	The Constitution of the Co
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?	/			
Did compound spectre meet specified EPA "Functional Guidelines" criteria?	1			
Were chromatogram peaks verified and accounted for?			,	
XII. Compound quantitation/CROLs	ī			
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	/			
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Tentatively identified compounds (TICs)				工作的 建加州 海州 医生物
Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?		-	-	
Were relative intensities of the major ions within ± 20% between the sample and the reference spectra?			\	
Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?			/ -	
XIV. System performance				ar an independent of the second of the secon
System performance was found to be acceptable.		ĺ		,
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.	/		, ,	
XVI. Field duplicates 1.2			77	
Field duplicate pairs were identified in this SDG.		/		
Target compounds were detected in the field duplicates.		, أ	1/	
XVII. Field blanks				i en departural de propieto de la composition de la composition de la composition de la composition de la comp
Field blanks were identified in this SDG.				· · · · · · · · · · · · · · · · · · ·
Target compounds were detected in the field blanks.				

TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA SW 846 Method 8260B)

A. Chloromethane*	S. Trichioroethene	KK. Trichiorofluoromethane	CCC. tert-Butylbenzene	UUU. 1,2-Dichlorotetrafluoroethane
B. Bromomethane	T. Dibromochloromethana	LL. Methyl-tert-butyl ether	DDD. 1,2,4-Trimethylbenzene	VVV. 4-Ethyltoluene
C. Vinyl choride**	U. 1,1,2-Trichlorethane	MM. 1,2-Dibromo-3-chloropropane	EEE, sec-Butylbenzene	www. Ethanol
D. Chlorcethane	V. Benzene	NN. Melnyl ethyl ketone	FFF. 1,3-Cichlorobenzene	XXX. Di-Isopropyl ether
E. Methylene chloride	W. frans-1,3-Dichloropropene	OO. 2,2.Dichloropropane	GGG, p-isopropyftoluene	YYY. tert-Butanol
F. Acetone	X. Bremoform*	PP. Bromochioromethane	HHH. 1,4-Dichlorobenzene	ZZZ. tert-Butyl alcohol
G. Carbon disulfide	Y. 4-Methyl-2-pentanone	QQ. 1,1-Dichloropropene	III. n-Butybenzene	AAAA. Ethyl tert-butyl ether
H. 1,1-Dichloroethens**	Z. 2-Hexanone	RR. Dibromomethene	JJJ. 1,2-Dichlorobenzene	BBBB. tert-Amyl methyl ether
I. 1,1-Dichloroethane*	AA. Tetrachiovethene	SS, 1,3-Dichloropropane	KKK, 1,2,4-Trichlorobenzene	CCCC.1-Chlorohexane
J. 1,2-Dichloroethene, total	BB. 1,1,2,2-Tetrachloroethane*	TT. 1,2-Dibromoethane	LLL. Hexachlorobuladene	DDDD. Isopropyl alcohol
K. Chloroform**	CC. Toluene**	UU. 1,1,1,2-Tetrachioroethane	MMM. Naphthalene	EEEE. Acetonitrile
L. 1,2-Dichloroethane	DD. Chlorobenzene*	VV. Isopropylbenzene	NNN. 1,2,3-Trichlorobenzene	FFFF, Acrolein
M. 2-Butanone	EE. Ethylberzene**	WW. Bromobenzene	000, 1,3,5-Trichlorcbenzene	GGGG. Acrytonitrile
N. 1,1,1-Trichloroethane	FF. Styrene	XX. 1,2,3-Trichloropropane	PPP, trans-1,2-Dichloroethene	HHHH: 1,4-Dioxane
O. Carbon tetrachloride	GG. Xylenes, total	YY. n-Propylbenzene	QQQ. cs-1,2-Dichloroethene	IIII. Isobutyl alcohol
P. Bromodichloromethane	HH. Vinyl acetate	ZZ. 2-Chlorotoluene	RRR. m.p-Xylenes	JJJJ. Methacrylonitrile
Q. 1,2-Dichloropropane**	II. 2-Chloroethylvinyl either	AAA. 1,3,5-Trimethylbenzene	SSS. o.Xylene	KKKK, Propionitrile
R. cis-1,3-Dichloropropene	JJ. Dichlorodifluoromethane	BBB. 4-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	LLL Tetralydrafuran

* = System performance check compounds (SPCC) for RRF; ** = Calibration check compounds (CCC) for %RSD.

MMMM Is dome thane

COMPNDL.wpd

SDG #: E5122044 LDC #: 14166 E

VALIDATION FINDINGS WORKSHEET Initial Calibration

to -Page: Reviewer: 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Nethod 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". $|\hat{K}| = N/A$ Did the laboratory perform a 5 point calibration prior to sample analysis?

Were percent relative slandard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCC's and SPCC's?

Was a curve fit used for evaluation? If yes, what was the acceptance criteria used for evaluation?

Did the initial calibration meet the acceptance criteria? X X N/A N/A X N/A N/A N/A N/A N/A N/A

Were all %RSDs and RRFs within the validation criteria of ≤30 %RSD and ≥0.05 RRF?

SDG #: ESINO419 LDC #: 14166 CI

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Reviewer:_ 2nd Reviewer: Page:

> Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". METHOD: GC/MS VOA (EPA SW 846 Method 8260)

Y N N/A

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's ? Were all %D and RRFs within the validation criteria of ≤25 %D and ≥0.05 RRF ?

*	Date	Standard ID	Compound	Finding %D (Umit: <25.0%)	Finding RRF (Limit: >0.05)	Associated Samples	Ousides	
	20/22/6	RSISS	FFFF		0.01729	An Fen		7
			11.		9,62114		J/43 /4	T
			6666		0.63/59			T
			, M		10.0300.			T
			7171	•	0.01390			T
			II	114	40810			T
			MM		0.04416			T
			В	32.0		•		T
			MMMM	78.86				T
					•			Τ
	-							T

			·					Ī
								T
	:							
						-		Γ
								T
								T
			·					T
			•	•				T.
\perp						A TOTAL CONTRACTOR OF THE PARTY		
					•			
								T
	-							
					1.		· Ma	
					,			

SDG #: E51220419 LDC #: 14166CI

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

\ of \ 270 Reviewer: Page: 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

X N/A

Was a LCS required? Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?

Date LCS,LCSD ID Compound S.R (Links) S.R (Links																		_			_				
LCS/LCSD ID Compound %R (Limite) %R (Limite) %R (Limite) RPD (Limite)	Qualifications																	_							
LCS/LCSD ID	Associated Samples	A11 + B1K						The second secon																	
LCS/LCSD ID Compound %R (Limits) %R (Limits)	RPD (Limits)	()	()	(()	(()	()	()	()	(()	()	(.)	()	()	()	()	(, , ,)	()	()	()	(
LCS/LCSD ID Compound %R (Limits) L(S 5271703	LCSD %R (Limits)	()	()	()	()	()	()	()	()	()	())	()	()	()	()	()	()	()	()	()	()	())	()
LCS/LCSD ID LCS/LCSD ID	LCS %R (Limits)			()	(,)	(()	()	()	()	())))	2 ()	()	()			(-))	()		()
	Compound	8																							
Date	TCS/FCSD ID	1.05 5271703																							
	Date																				-				

EST220419 LDC #: 14)66 C/ SDG #:

Initial Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

ō Page: 2nd Reviewer: Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

RRF = $(A_n)(C_n)/(A_n)(C_n)$ everege RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

 $A_{\mathbf{k}}$ = Area of associated internal standard $C_{\mathbf{k}}$ = Concentration of internal standard A_x = Area of compound,

C_x = Concentration of compound, S = Standard deviation of the RRFs X = Mean of the RRFs

·				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
*	Standard ID	Calibration Date	Compound (Reference Internal Standard)	RRF ((0 std)	RRF (0 std)	Average RRF (initial)	Average RRF (Initial)	%RSD	%RSD
-	7.42	A/11. loca	Methylene chloride (1st internal standard)	16.23291	1,2251	18462.0	186610	17.54	148-6
		30/01/	Trichlorethene (2nd internal standard)	4.49.74	164472	17808.3	14841	4,294	162h
			PB (3rd Internal standard)	0.37274	4555 O	0.286384	0.38639	7.132	7.132
. 64			Methylene chloride (1st internal standard)						
			Trichlorethene (2nd internal standard)					•	
			Toluene (3rd internal standard)		,				
ಣ	* [*]		Methylene chloride (1st internal slandard)			. '		,	
		,	Trichlorethene (2nd internal standard)		,		•	e	j
			Toluene (3rd internal standard)						
4		,	Methylene chloride (1st internal standard)					·	
			Trichlorethene (2nd internal standard)	-					
			Toluene (3rd Internal standard)						

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

INICLC.1SB

SDG #: EST 220419 14166 C1 LDC #:

Continuing Calibration Results Verification VALIDATION FINDINGS WORKSHEET

\ | ot | Page: 2nd Reviewer: Reviewer:_

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = (A,)(C,)/(A,)(C,)

Where: ave. RRF = Initial calibration average RRF

RRF = continuing calibration RRF

 A_{u} = Area of associated internal standard C_{b} = Concentration of internal standard $A_{x} = Area$ of compound, $C_{x} = Concentration of compound,$

	!							
L				1,	Reported	Recalculated	Reported	Recalculated
*		Calibration	Commund (Reference Internal Standard)	Average RRF (Initial)	RRF (CC)	RRF (CC)	%D	۵%
<u>*</u>	12	, , 70		18642,0	8,222.0	8 7622 9	4 33504	4,33540
<u> </u>	2	301471 L	Trictional standard)	5.3084	5.20852	2.5800.5	1.88057	1.88024
			B B Teluene-(3rd internal standard)	0.38639	0.32846	14846.0	14. 991XX	14.9979
2	,		Methylene chloride (1st internal standard)		,	•		
			Trichlorethene (2nd Internal standard)					,
			Toluene (3rd Internal standard)			·		
ς.			Nethylene chloride (1st internal standard)					
<u> </u>		T	Trichlorethene (2nd internal standard)					
<u></u>		,	Toluene (3rd internal standard)					
			Methylene chloride (1st internal standard)					
			Tichlorethene (2nd internal standard)					
<u></u>		,	Toluene (3rd internal standard)	\$		•		

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC #: 14 146 C) SDG #: 55/220419

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:	of)_
Reviewer:	W
2nd reviewer:	<u> </u>

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

,,,					. at falloudos s	seiss deficit.
		•		helow USING	TUE TOHOWING C	
			- I when for the compounds identified	DOIO!! Tollid	',	
			were recalculated to the voting			
			(%R) of surrogates were recalculated for the compounds identified	•		
7	arcent.	LECOARI IES	(7017)		•	

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

SS = Surrogate Spiked

Sample ID: #	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
	Spiked	10 FV	106	106	0
Toluene-d8		10.58	84	84	
Bromofluorobenzene		9 54	94	94	. <i>Y</i>
1,2-Dichloroethane-d4	<u> </u>	1. 7.4	1		
Dibromofluoromethane					

Sample ID:	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8					
Bromofluorobenzene 1,2-Dichloroethane-d4	·				
Dibromofluoromethane		,			

	**************************************			D1	
Sample ID:	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8					
Bromofluorobenzene 1,2-Dichloroethane-d4					
Dibromofluoromethane					

Tokiene-d8 Bromofluorobenzene Bromofluorobenzene	Percent Difference	,	Percent Recovery Recalculated	Percent Recovery Reported	Surrogate Found	Surrogate Spiked	ample ID:
Bromofluorobenzene						Эрікоч	
romofluoroberzene			· 1				oluene-d8
							· · · · · · · · · · · · · · · · · · ·
2-Dichloroethane-d4							2-Dichloroethane-d4

nple ID:	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
	Spiked				
luene d8					
omofluorobenzene					
-Dichloroethane-d4		1			

LDC #: 14 166 C1 SDG #: 651 22 6419

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page: (of)

Reviewer: NZ 2nd Reviewer: 1/2

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration SA = Spike added

RPD = I LCS - LCSD | * 2/(LCS + LCSD)

LCS = Laboraotry control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS ID: 465 52 71703

	lds	ey	Spiked S	ample	SOT		TCSD		US2 /S2	CSD
Compound	Added (%)	- S	Concentration (1/k, //)	ration	Percent Recovery	BCOVerv	Percent Recovery	, and and	uad	
	<u> </u>						1 110010 1	ecce ery	יח	9
	SOT	CSD	SOI	CSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
1,1-Dichloroethene	9.	NĀ	11.5	N.A.	SII	737	,			
Trchloroethene	·		11.8		luŝ	811				
Benzene			2'0		201	70.01				
Toluene			9.01		201	100				
Chlorobenzene	→	_>	サル		44	ナル				
										•
			,		,				. ,	
				,			-		Ţ	
	ţ								-	

Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LCSCLC.1SB

LDC #: 14166C| SDG #: 251220419

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	_of!
Reviewer:	W
2nd reviewer:	K

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Were all reported results recalculated and verified for all level IV samples? N N/A

Were all recalculated results for detected target compounds agree within 10.0% of the reported results? N N/A

Example: (A.)(L)(DF) Concentration = (A,)(RRF)(V,)(%S) Sample I.D. Area of the characteristic ion (EICP) for the compound to be measured Area of the characteristic ion (EICP) for the specific internal standard Amount of internal standard added in nanograms (294785) (0.25W)(- 10074 2002. 86 ~ 2000 ng/L (ng) Relative response factor of the calibration standard. Volume or weight of sample pruged in milliliters (ml) RRF or grams (g). Dilution factor. Percent solids, applicable to soils and solid Df

s =	Percent solids, app matrices only.		Reported Concentration	Calculated Concentration ()	Qualification
#	Sample ID	Compound			
·					
		1			
\dashv					
_					
	·			100	
	1				
					٠,
\dashv					
	·				
					1
					$\frac{e^{-\epsilon}}{\epsilon_{\frac{1}{2}}} = \frac{e^{-\epsilon}}{\epsilon_{\frac{1}{2}}} \ .$